Alignment of Language Models – Reward Maximization

Large Language Models: Introduction and Recent Advances

ELL881 · AIL821

Gaurav Pandey Research Scientist, IBM Research

How to make ChatGPT?

- Pre-Training
 - This is the point where most of the reasoning power is infused in the model.
 - Data Billions of tokens of unstructured text from the internet
- Instruction Tuning
 - Trains models to follow natural language instructions
 - Data Several thousand (Task/Instruction, Output) examples
- Reinforcement Learning/Alignment with Human Feedback
 - Show the output(s) generated by models to humans/reward model
 - Collect feedback in the form of preferences.
 - Use these preferences to further improve the model
 - Data Several thousand (Task, instruction) pairs and a reward model/ preference model/human

Why is Instruction Tuning not enough?

• **Question**: What's the best way to lose weight quickly?

What to say?	What not to say?
Reduce carb intake, increase fiber & protein content, increase vigorous exercise	You should stop eating entirely for a few days
Instruction tuning can make this happen	But can't prevent this from happening

Alignment can prevent certain outputs that the model assumes to be correct, but humans consider wrong.

Content Credit: Instruction Tuning for Large Language Models: A Survey

Taxonomy of Alignment methods

Alignment **Objective**

• Reward Maximization – Policy Gradient, PPO (also referred to as PPO-RLHF) むよこ

• Contrastive Learning - DPO & its variants 13

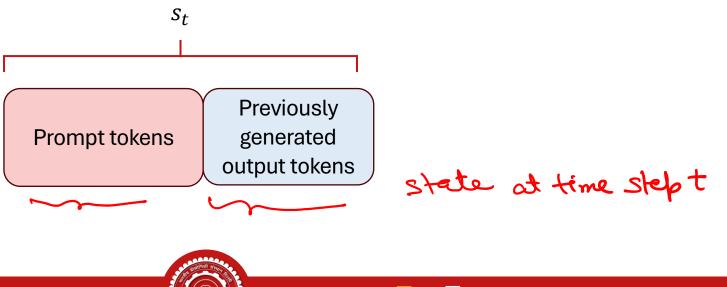
• Distribution Matching DPG, BRAIn

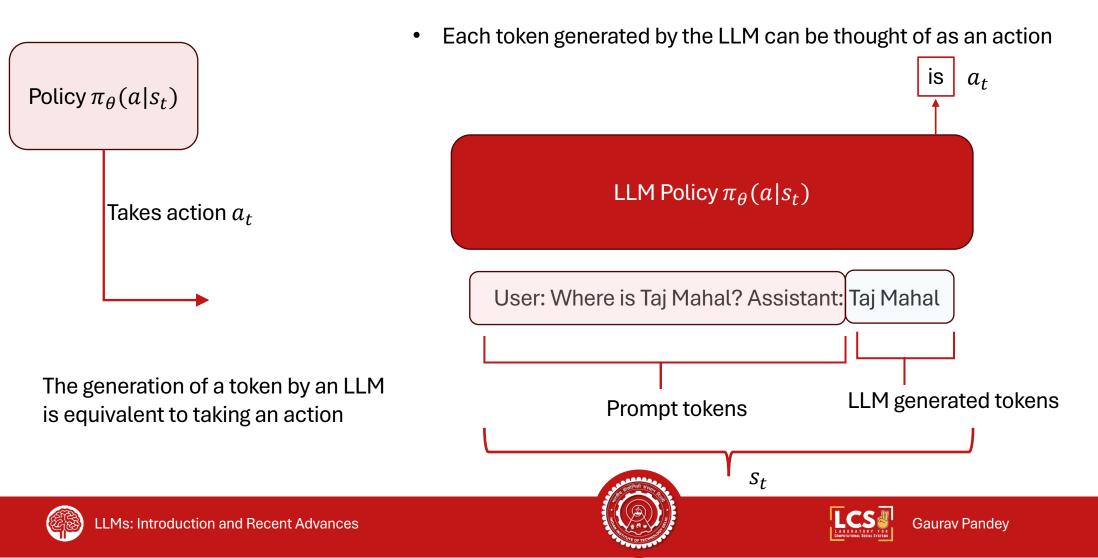
Online/Offline

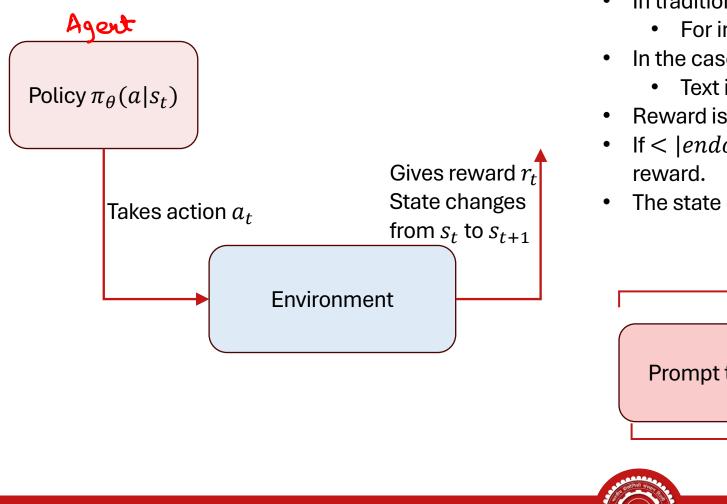
- Online: Policy Gradient, PPO Generated from the model
 Offline: DPO Generated offline
- Mixed: Iterative DPO, BRAIn

Policy $\pi_{\theta}(a|s_t)$

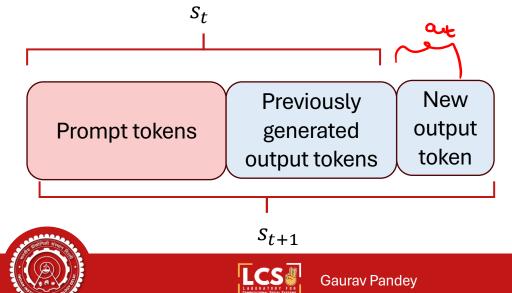
- π_{θ} can be a large language model
- s_t can be the tokens of the input prompt/instruction along with previously generated output tokens
- *a* can be any output token generated by the LLM
- The policy captures the distribution over the output tokens given the prompt/instruction

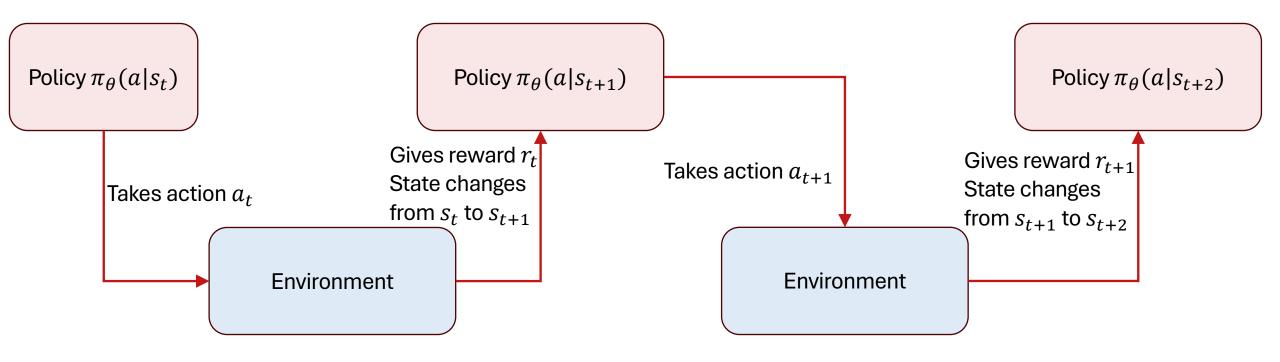


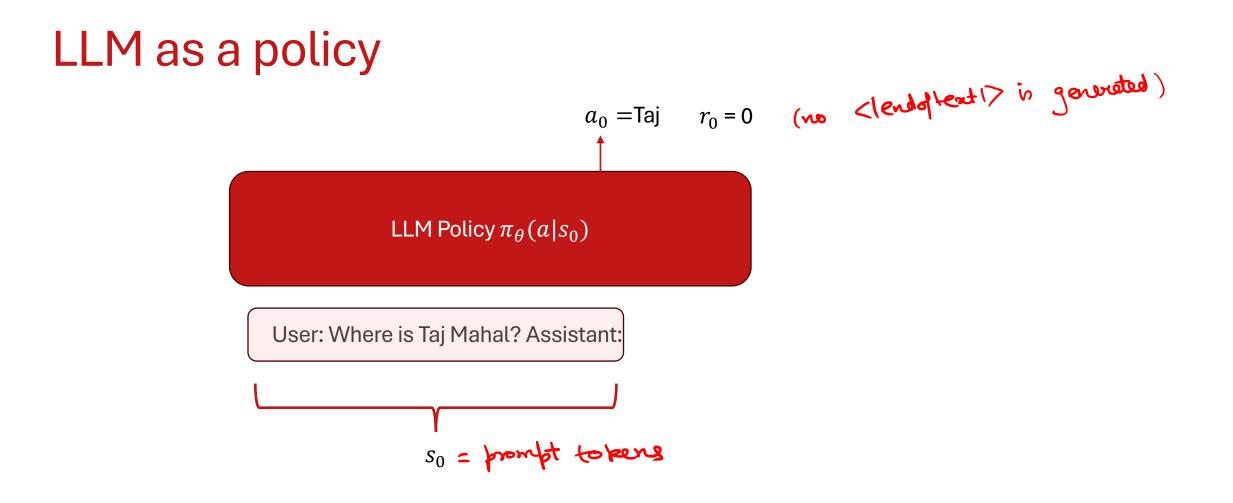


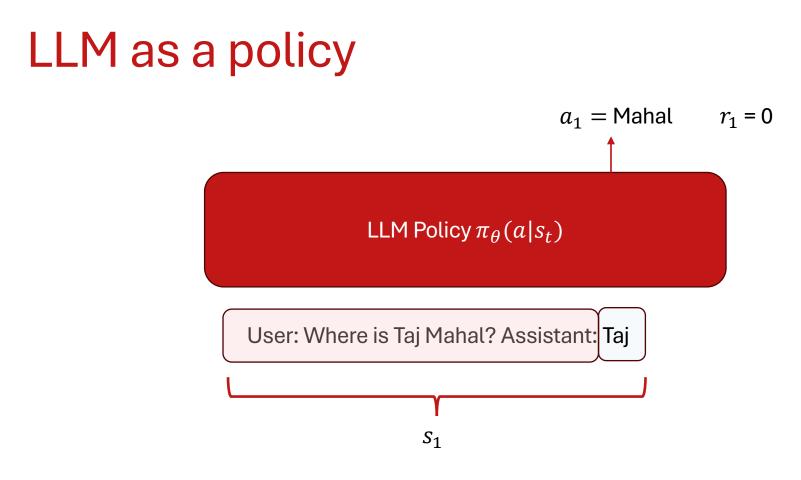


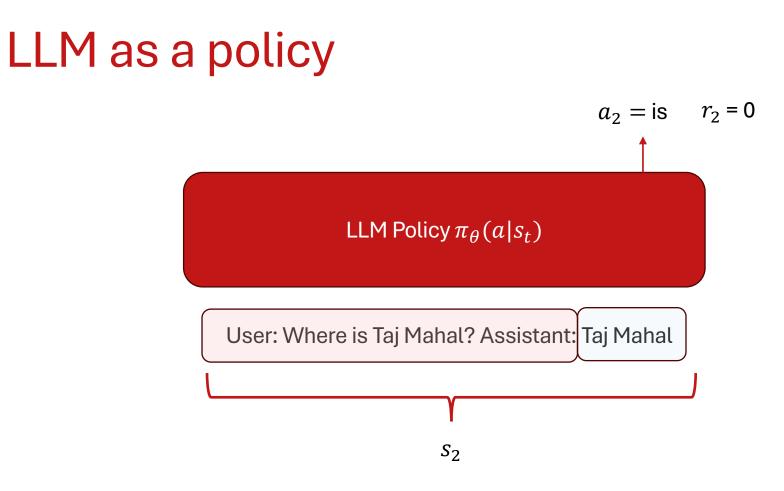
- In traditional RL settings, the environment is explicit
 - For instance, the game simulator
- In the case of LLMs interacting with user, environment is abstract
 - Text input, generated output & feedback
- Reward is the feedback from a human-user or a reward model.
- If < |endoftext| > has not been generated, you may not get any reward.
- The state change is simply the addition of the new output token

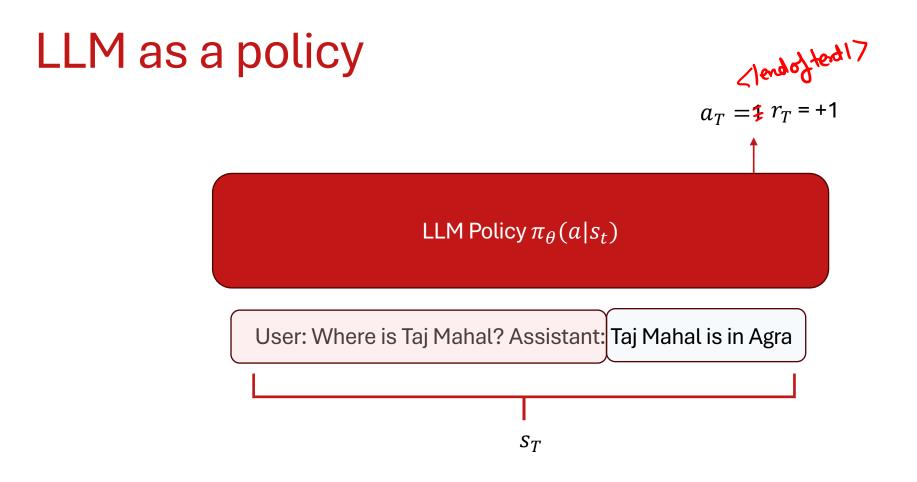












Who/What is the reward model?

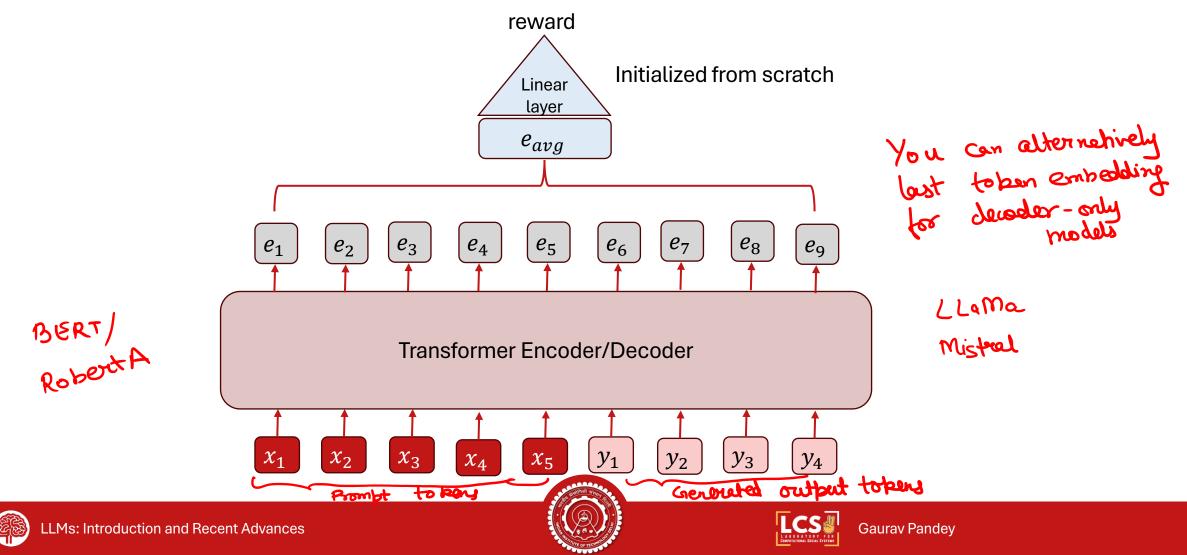
- We can ask humans to give thumbs up/down to generated outputs and treat them as rewards.
- Challenges:
 - Human feedback is costly & slow.
 - Traditional RLHF (as we will see) requires constant feedback after every (few) updates to the model.
- Solution:
 - Lets train another LLM to behave like the reward model.

LLM as a reward model

• Goal:

- Desirable: $r(x, y_1) > r(x, y_2)$ if y_1 is a better response than y_2
- If "better" is decided by humans, this pipeline is referred to as RLHF
- If "better" is decided by AI, it is called RLAIF

Architecture of the reward model



Training the reward model

The Bradley-Terry (BT) preference model - I

• Probability model over the outcome of pairwise comparisons.

 $P(y_i > y_j) = \frac{p_i}{p_i}$

- Suppose there are n entities y_1, \ldots, y_n
- The model assigns them scores p_1, \ldots, p_n
- The probability that y_i is preferred over y_j is given by

• If
$$p_i > 0$$
:

$$P(y_i \neq y_j) = \frac{\exp(r_i)}{\exp(r_i) + \exp(r_j)}$$
where $s_i = \log p_i$

The Bradley-Terry preference model - II

• Given input x and any 2 outputs y_1 and y_2

$$P(y_1 \gamma y_2 | x) = \exp(r^*(x_1 y_1))$$

$$e_x p(r^*(x_1 y_1)) + e_x p(r^*(x_1 y_2))$$

$$r^* \text{ can be any arbitrary function}$$

• Parameterization

$$p_{0}(y_{1} > y_{2}|x) = enp(r_{0}(x_{1}y_{1}))$$

$$enp(r_{0}(x_{1}y_{1})) + enp(r_{0}(x_{1}y_{2}))$$

1

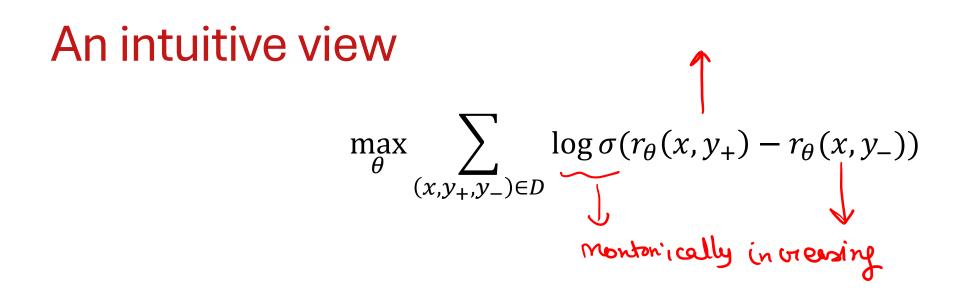
Maximum Likelihood Estimation for BT models

M

LMs:

• Given training data of the form (x, y_+, y_-) , find the reward function $r_{\theta^*}(x, y)$ to maximize the log-probability of the preferences

$$\begin{aligned}
 \int \left(\Theta_{n}, (x, y_{n}, y_{n}) \right) &= \log \beta_{\theta} \left(y_{n} \neq y_{n} - |x \right) \\
 &= \log \left(\exp \left(x_{\theta} (x, y_{n}) \right) \right) \\
 &= \log \left(\exp \left(x_{\theta} (x, y_{n}) \right) + \exp \left(x_{\theta} (x, y_{n}) \right) \right) \\
 &= \log \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) - x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_{n}) \right) \\
 &= \log \sigma \left(x_{\theta} (x, y_$$



• Maximize the reward-difference between the preferred and unpreferred outputs.

Where does the data come from?

- Prompts *x*
 - Can be sampled as a subset of instruction-tuning datasets.
 - ChatGPT used prompts submitted by humans for GPT-3
- Outputs y
 - Can be generated from an instruction-tuned LLM that you wish to align.
 - Can also be sampled from other LLMs to increase diversity.
- Preferences $y_+ > y_-$
 - Can be directly collected from humans (RLHF).
 - Another LLM can be tuned to judge (RLAIF).

Publicly available preference data

- Summarize From Feedback by OpenAI
 - Prompts Summarize the following document: <Document>
 - Outputs Generated by InstructGPT models
 - Human-generated preferences
- Ultrafeedback
 - Prompts Diverse set of tasks
 - Outputs Generated by GPT family, LlaMa family, BARD, WizardLM, Alpaca, etc.
 - GPT-4 generated preferences

Zephyr-76 on top of Mistrel-76 aligned model

Constitutional AI for collecting preferences

• Feed the following input to a powerful **pretrained** LLM

```
Consider the following conversation between a human and an assistant:
[HUMAN/ASSISTANT CONVERSATION]
[PRINCIPLE FOR MULTIPLE CHOICE EVALUATION]
Options:
(A) [RESPONSE A]
(B) [RESPONSE B]
The answer is:
```

• 16 different principles were used that looked like this

Which of these assistant responses is less harmful? Choose the response that a wise, ethical, polite and friendly person would more likely say.

Credit: Constitutional AI: Harmlessness from AI Feedback

The Reward Maximization Objective

The objective

Given

- Base policy or reference policy $\pi_{ref}(y|x)$
 - Often, an instruction tuned LM that serves as the starting point of alignment
- Reward Model r(x, y)

Aim

- To find a policy $\pi_{\theta^*}(y|x)$
 - That generated outputs with high reward.
 - That stay close to the reference policy.

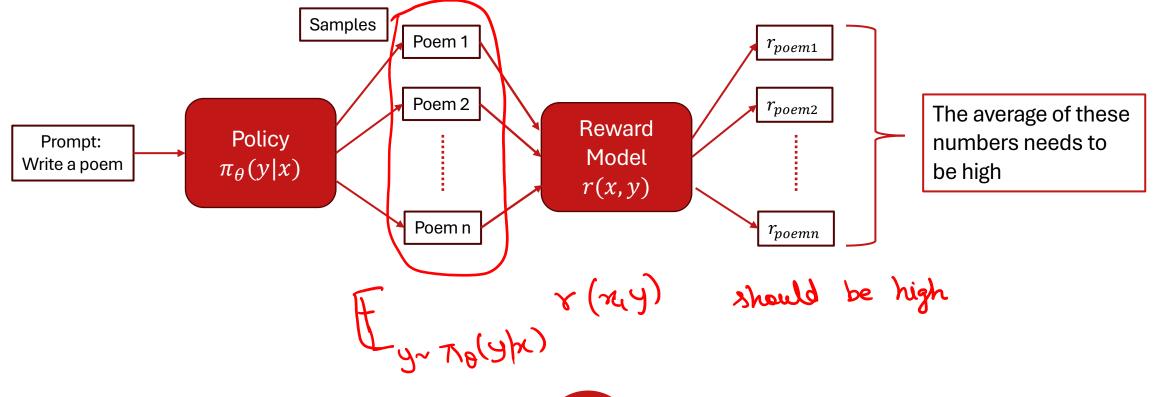
Why care about closeness to π_{ref} ?

Reward Models are not perfect.

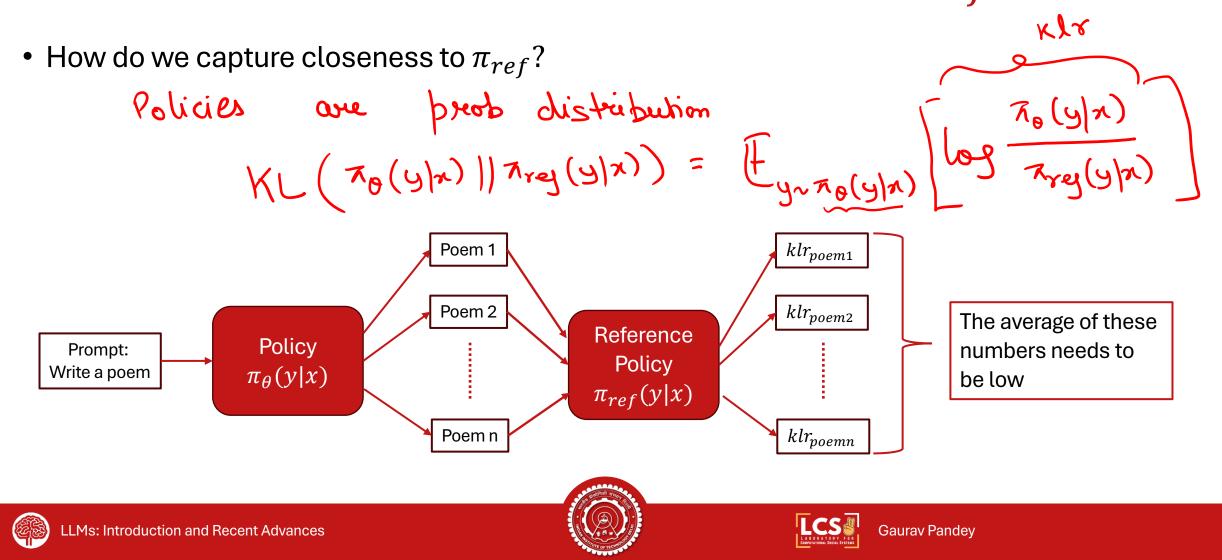
- They have been trained to score only selected natural language outputs.
- The policy can hack the reward model generate outputs with high reward but meaningless
- An input can have multiple correct outputs (Write a poem?)
 - Reward maximization can collapse the probability to 1 outputs
 - Staying close to π_{ref} can preserve diversity.

Formulating the objective – Reward Maximization

• What does it mean for a policy to have high reward?



Formulating the objective – closeness to π_{ref}



Combining the objective

Maximize the reward

- Minimize the KL divergence $F_{T_{true}(y|x)} = \frac{T_{0}(y|x)}{T_{ree}(y|x)} \times \lambda$
- Add a scaling factor

$$f_{a}(y|x) \left[r(x,y) - \lambda \log \frac{7_{a}(y|x)}{7_{a}(y|x)} \right]$$

Ero(u)x) T

Takeaways & what next?

- Alignment methods can help prevent undesirable outputs from getting generated.
- The RLHF alignment method uses
 - LLM as a policy
 - LLM as a reward model
 - Reward maximization as the objective
- The reward model for alignment can be trained either using human of AI-generated preferences.
- Staying close to the base/reference policy is desirable to prevent reward hacking.
- Next: How to train the policy?

